Skip to content

Implementation Details

Deep dive into TokenFlow's implementation across languages.

Architecture Overview

TokenFlow follows a modular architecture:

┌─────────────────┐
│  Token Manager  │  ← Core token lifecycle
└────────┬────────┘
    ┌────┴────┐
    │         │
┌───▼───┐ ┌──▼────┐
│Copilot│ │ Hyper │  ← Service-specific implementations
└───────┘ └───────┘

Language-Specific Implementations

Go Implementation

Philosophy: Idiomatic Go with standard library

Key Design Decisions:

  1. Context-based cancellation

    func PollForToken(ctx context.Context, ...) (*Token, error)
    

  2. No external dependencies for core functionality

  3. Struct-based API

    type Token struct {
        AccessToken  string
        TokenType    string
        ExpiresIn    int
        // ...
    }
    

  4. Error handling via return values

Python Implementation

Philosophy: Async-first with type hints

Key Design Decisions:

  1. Async/await for all I/O operations

    async def poll_for_token(device_code: DeviceCode) -> Token
    

  2. Dataclasses for structured data

    @dataclass
    class Token:
        access_token: str
        token_type: str
        expires_in: int
    

  3. Type hints throughout

  4. Requests library for HTTP (with custom adapter)

TypeScript Implementation

Philosophy: Type-safe with modern async patterns

Key Design Decisions:

  1. Promises for async operations

    async function pollForToken(deviceCode: DeviceCode): Promise<Token>
    

  2. Classes for data structures

    class Token {
        constructor(data: TokenData) { ... }
    }
    

  3. Axios for HTTP client

  4. Strict TypeScript mode enabled

HTTP Client Design

Custom Headers

All implementations inject custom headers:

Header Value Purpose
X-Initiator vscode Identify as VS Code
User-Agent TokenFlow/1.0 Library identification
Accept application/json Response format

Timeout Handling

30-second timeout for all requests:

client := &http.Client{
    Timeout: 30 * time.Second,
}
response = session.get(url, timeout=30)
axios.get(url, { timeout: 30000 })

Response Size Limiting

1MB response size limit to prevent memory exhaustion:

const maxResponseSize = 1024 * 1024
reader := io.LimitReader(resp.Body, maxResponseSize)
MAX_RESPONSE_SIZE = 1024 * 1024
for chunk in response.iter_content(chunk_size=8192):
    if total_size > MAX_RESPONSE_SIZE:
        raise ValueError("Response too large")
const MAX_RESPONSE_SIZE = 1024 * 1024;
if (response.data.length > MAX_RESPONSE_SIZE) {
    throw new Error("Response too large");
}

Token Expiration Logic

Buffer Calculation

10% buffer before actual expiration:

def is_expired(self) -> bool:
    buffer = self.expires_in * 0.1
    return datetime.now() >= (self.expires_at - timedelta(seconds=buffer))

Rationale: Prevents race conditions where token expires during request.

Example: - Token expires in 3600 seconds - Buffer = 360 seconds (10%) - Token considered expired after 3240 seconds

Polling Strategy

Initial Interval

Use server-provided interval from device code response:

interval = device_code.interval  # Usually 5 seconds

Slow Down Handling

Increment interval by 5 seconds on slow_down error:

if error == "slow_down":
    interval += 5
    continue

Maximum Attempts

Poll until: - Success (token received) - Device code expires (typically 15 minutes) - User denies authorization - Fatal error occurs

Disk Cache Format

GitHub Copilot Cache

Location: ~/.config/github-copilot/hosts.json (Linux/macOS)

Structure:

{
  "github.com": {
    "oauth_token": "gho_...",
    "user": "username"
  }
}

TokenFlow Cache

Simple JSON format:

{
  "access_token": "gho_...",
  "token_type": "Bearer",
  "expires_in": 3600,
  "expires_at": "2026-01-08T12:00:00Z"
}

Testing Strategy

Unit Tests

Mock HTTP responses:

@pytest.fixture
def mock_device_code():
    return DeviceCode(
        device_code="test_device_code",
        user_code="TEST-1234",
        verification_uri="https://github.com/login/device",
        interval=5
    )

Integration Tests

Test against real services (with valid credentials):

@pytest.mark.integration
async def test_full_flow():
    device_code = await initiate_device_flow()
    # Manual authorization required
    token = await poll_for_token(device_code)
    assert token.access_token

Performance Considerations

Memory Usage

  • Token objects: ~200 bytes
  • HTTP responses limited to 1MB
  • Streaming JSON parsing where possible

Network Efficiency

  • Connection reuse via HTTP clients
  • Gzip compression support
  • Minimal request payloads

CPU Usage

  • Polling intervals respect server limits
  • No busy waiting
  • Efficient JSON parsing

Future Enhancements

Planned improvements:

  1. Refresh token support - Automatic token refresh without re-authentication
  2. Token encryption - Encrypt cached tokens at rest
  3. Multiple service support - Generalized OAuth flow for any service
  4. Rate limiting - Built-in rate limit handling
  5. Metrics - Optional telemetry for usage tracking